首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   0篇
  国内免费   5篇
安全科学   4篇
废物处理   4篇
环保管理   14篇
综合类   22篇
基础理论   25篇
污染及防治   42篇
评价与监测   19篇
社会与环境   14篇
  2023年   2篇
  2022年   11篇
  2021年   10篇
  2020年   1篇
  2019年   5篇
  2018年   6篇
  2017年   6篇
  2016年   5篇
  2015年   5篇
  2014年   6篇
  2013年   5篇
  2012年   8篇
  2011年   6篇
  2010年   9篇
  2009年   6篇
  2008年   7篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2000年   4篇
  1998年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1984年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1958年   2篇
  1957年   1篇
排序方式: 共有144条查询结果,搜索用时 375 毫秒
61.
Alloxan-induced diabetic rats were treated with multiple herbal preparation besides a control group receiving distilled water. The levels of glucose and alkaline phosphatase (ALP) increased abnormally in the alloxan treated group and the same were normalized upon treatment with the herbal preparation. The levels of blood urea nitrogen (BUN), alanine aminotransferase (ALT), protein and albumin in all groups remained unaltered. However, weekly body weight gain which got significantly altered in the alloxan-treated group was normalized by treatment with the herbal preparation. On the whole, a profound hypoglycemic effect was observed by the multiple herbal treatment in the diabetic rats.  相似文献   
62.
63.
Sood N  Lal B 《Chemosphere》2008,70(8):1445-1451
Paraffin deposition problems, that have plagued the oil industry, are currently remediated by mechanical and chemical means. However, since these methods are problematic, a microbiological approach has been considered. The bacteria, required for the mitigation of paraffin deposition problems, should be able to survive the high temperatures of oil wells and degrade the paraffins under low oxygen and nutrient conditions while sparing the low carbon chain paraffins. In this study, a thermophilic paraffinic wax degrading bacterial strain was isolated from a soil sample contaminated with paraffinic crude oil. The selected strain, Geobacillus TERI NSM, could degrade 600mg of paraffinic wax as the sole carbon source in 1000ml minimal salts medium in 7d at 55 degrees C. This strain was identified as Geobacillus kaustophilus by fatty acid methyl esters analysis and 16S rRNA full gene sequencing. G. kaustophilus TERI NSM showed 97% degradation of eicosane, 85% degradation of pentacosane and 77% degradation of triacontane in 10d when used as the carbon source. The strain TERI NSM could also degrade the paraffins of crude oil collected from oil wells that had a history of paraffin deposition problems.  相似文献   
64.
Measurements of light (C(2)-C(5)) non-methane hydrocarbons (NMHCs) were made along with ozone (O(3)), oxides of nitrogen (NO(x)), carbon monoxide (CO) and methane (CH(4)) at Hissar and Kanpur in the Indo-Gangetic Plain (IGP) in India during the month of December, 2004. Air samplings during noon and evening hours provided an opportunity to study the emission characteristics and changes during this period at these sites. The mixing ratio of O(3) was higher during noon hours due to photochemical formation, while the levels of precursor gases showed elevated values during the evening hours on a clear sky day. On foggy days there is no such variation. The lower mixing ratios of O(3) observed on foggy days could be due to the slower rate of photochemical formation caused by a reduction in solar flux and surface deposition caused by the presence of a stable planetary boundary layer. Propene and ethene show the highest evening to noon ratio due to their faster reactivities with OH radicals. Correlations among different species of the measured gases indicate contributions of emissions from biomass and biofuel burning as well as fossil fuel combustion. Although qualitatively in relation to O(3), the propylene (propene) equivalents of NMHCs have been calculated to investigate their roles in O(3) photochemistry and compared with the data from Ahmedabad, an urban site in western India. The important result, which has emerged from the analysis of the observed data, is that while the total amount of these NMHCs is least at Hissar and highest at Ahmedabad, the total propylene-equivalent is highest at Hissar and lowest at Ahmedabad. Further, these two sites in the IGP show significant contributions, almost 72-77%, by propene and ethene while the contribution by these two gases at Ahmedabad is only about 47%. The surface level mixing ratios of O(3) could be treated as representative for the chemical characterization of air mass at a regional scale over the IGP as the month long trends of O(3) show significant similarity compared to the trends in precursors at the two sites.  相似文献   
65.
Environmental Science and Pollution Research - Warming of the earth is considered as the major adverse effect of climate change along with other abnormalities such as non-availability of water...  相似文献   
66.
67.
A fungal strain able to use atrazine (2-chloro-4-ethylamino-5-isopropylamino-1,3,5-triazine) as a source of nitrogen was isolated from a corn field soil that has been previously treated with the herbicide. This strain was purified and acclimatized to atrazine at a higher level in the laboratory. A supplemented N was required to trigger the reaction. Atrazine was degraded at a faster rate in inoculated mineral salt medium (MSM) than non-inoculated MSM. Within 20 days, nearly 34% of the atrazine was degraded in inoculated medium while only 2% of the herbicide was degraded in non-inoculated medium. Degradation of atrazine by the isolated fungal strain was also studied in sterile and non-sterile soil to determine the compatibility of the isolated strain with native microorganisms in soil. The degradation of atrazine was found to be more in inoculated sterile soil than in inoculated non-sterile soil. Cell free extract (CFE) of fungal mycelium degraded about 50% of the atrazine in buffer in 96 hours compared to the control. Four atrazine metabolites were isolated and characterized by LCMS. On the basis of morphological parameters the isolate was identified as Penicillium species. Results indicated that the microorganism may be useful for remediation of atrazine-contaminated soil.  相似文献   
68.
● Health hazards of plastic waste on environment are discussed. ● Microbial species involved in biodegradation of plastics are being reviewed. ● Enzymatic biodegradation mechanism of plastics is outlined. ● Analytical techniques to evaluate the plastic biodegradation are presented. The abundance of synthetic polymers has increased due to their uncontrolled utilization and disposal in the environment. The recalcitrant nature of plastics leads to accumulation and saturation in the environment, which is a matter of great concern. An exponential rise has been reported in plastic pollution during the corona pandemic because of PPE kits, gloves, and face masks made up of single-use plastics. The physicochemical methods have been employed to degrade synthetic polymers, but these methods have limited efficiency and cause the release of hazardous metabolites or by-products in the environment. Microbial species, isolated from landfills and dumpsites, have utilized plastics as the sole source of carbon, energy, and biomass production. The involvement of microbial strains in plastic degradation is evident as a substantial amount of mineralization has been observed. However, the complete removal of plastic could not be achieved, but it is still effective compared to the pre-existing traditional methods. Therefore, microbial species and the enzymes involved in plastic waste degradation could be utilized as eco-friendly alternatives. Thus, microbial biodegradation approaches have a profound scope to cope with the plastic waste problem in a cost-effective and environmental-friendly manner. Further, microbial degradation can be optimized and combined with physicochemical methods to achieve substantial results. This review summarizes the different microbial species, their genes, biochemical pathways, and enzymes involved in plastic biodegradation.  相似文献   
69.
Global warming risks from emissions of green house gases (GHGs) by anthropogenic activities, and possible mitigation strategies of terrestrial carbon (C) sequestration have increased the need for the identification of ecosystems with high C sink capacity. Depleted soil organic C (SOC) pools of reclaimed mine soil (RMS) ecosystems can be restored through conversion to an appropriate land use and adoption of recommended management practices (RMPs). The objectives of this paper are to (1) synthesize available information on carbon dioxide (CO2) emissions from coal mining and combustion activities, (2) understand mechanisms of SOC sequestration and its protection, (3) identify factors affecting C sequestration potential in RMSs, (4) review available methods for the estimation of ecosystem C budget (ECB), and (5) identify knowledge gaps to enhance C sink capacity of RMS ecosystems and prioritize research issues. The drastic perturbations of soil by mining activities can accentuate CO2 emission through mineralization, erosion, leaching, changes in soil moisture and temperature regimes, and reduction in biomass returned to the soil. The reclamation of drastically disturbed soils leads to improvement in soil quality and development of soil pedogenic processes accruing the benefit of SOC sequestration and additional income from trading SOC credits. The SOC sequestration potential in RMS depends on amount of biomass production and return to soil, and mechanisms of C protection. The rate of SOC sequestration ranges from 0.1 to 3.1 Mg ha(-1) yr(-1) and 0.7 to 4 Mg ha(-1) yr(-1) in grass and forest RMS ecosystem, respectively. Proper land restoration alone could off-set 16 Tg CO2 in the U.S. annually. However, the factors affecting C sequestration and protection in RMS leading to increase in microbial activity, nutrient availability, soil aggregation, C build up, and soil profile development must be better understood in order to formulate guidelines for development of an holistic approach to sustainable management of these ecosystems. The ECBs of RMS ecosystems are not well understood. An ecosystem method of evaluating ECB of RMS ecosystems is proposed.  相似文献   
70.
Lignite fly ash (LFA), being alkaline and endowed with excellent pozzolanic properties, a silt loam texture, and plant nutrients, has the potential to improve soil quality and productivity. Long-term field trials with groundnut, maize, and sun hemp were carried out to study the effect of LFA on growth and yield. Before crop I was sown, LFA was applied at various doses with and without press mud (an organic waste from the sugar industry, used as an amendment and source of nutrients). LFA with and without press mud was also applied before crops III and V were cultivated. Chemical fertilizer, along with gypsum, humic acid, and biofertilizer, was applied in all treatments, including the control. With one-time and repeat applications of LFA (with and without press mud), yield increased significantly (7.0–89.0%) in relation to the control crop. The press mud enhanced the yield (3.0–15.0%) with different LFA applications. The highest yield LFA dose was 200 t/ha for one-time and repeat applications, the maximum yield being with crop III (combination treatment). One-time and repeat application of LFA (alone and in combination with press mud) improved soil quality and the nutrient content of the produce. The highest dose of LFA (200 t/ha) with and without press mud showed the best residual effects (eco-friendly increases in the yield of succeeding crops). Some increase in trace- and heavy-metal contents and in the level of γ-emitters in soil and crop produce, but well within permissible limits, was observed. Thus, LFA can be used on a large scale to boost soil fertility and productivity with no adverse effects on the soil or crops, which may solve the problem of bulk disposal of fly ash in an eco-friendly manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号